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Abstract. In this study, we estimate the reduction in food waste that arises from the deployment

of a system that digitally records instances of food items discarded in a commercial kitchen. We

also shed light on the mechanisms that drive this impact. In a quasi-experimental setting, where the

system was deployed in approximately 900 kitchens in a staggered manner, we estimate the impact

using the synthetic difference-in-differences method. We find that three months after adoption,

kitchens generate 29% lower food waste, on average, than they would have in the absence of the

system— without any corresponding reductions in sales. Utilizing a long-short-term-memory fully-

convolutional-network classifier, we document that these reductions are accompanied by a 23%

decrease in demand chasing, a known bias in human inventory management. Upgrading to a

system that uses computer vision to automate waste classification leads to a further 30% reduction

in food waste generated by the kitchen a year after the upgrade. This further reduction is due to

the accurate recording of infrequent but very high-impact instances of food wasted that employees

avoid entering manually. We also observe substantial effect heterogeneity. Smaller kitchens and

those with buffet service (vs. table service) experience almost double the reduction in food waste

from the adoption of the system and also from the computer vision upgrade. Low and high-demand-

variability sites have higher reductions from adoption than those with medium-demand-variability

(42% vs 25%). The impacts of the upgrade are not detectably different with different demand

variability.

1. Introduction

One-third of all food produced is wasted. In the hospitality and food service industries alone,

wasted food costs over US$100 billion annually (Athmanathan 2021). The cost of wasted food can

often be equivalent to a typical firm’s net profits (Winnow Solutions 2024). As big as the financial

consequences are, the impact of food waste on global warming is even more pernicious. About 8% of

global greenhouse gas emissions come from food waste (Food and Agriculture Organization 2020).

In line with the United Nations Sustainable Development Goal Target 12.3 (United Nations 2021),

many nations and firms have committed to reducing their food waste by half by 2030. However,

the path to achieving this goal remains unclear.
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To better manage food waste, accurately measuring and monitoring what is wasted is essential.

However, retail-scale food production and service environments are notoriously data-scarce. A

typical restaurant only records the total raw materials purchased on a weekly or monthly cycle, with

no data on the precise quantities of ingredients that pass through each stage of food production and

service. In the rare cases that food waste is recorded, it is typically just the total weight of organic

waste collected by a waste collection company at a weekly or even monthly level. This makes it

hard to track what specific items are wasted and identify the root causes of this waste. Further,

in contrast with other modern production processes, there is no data on work-in-process inventory,

amount of finished goods produced, on-hand inventory, leftover inventory, or lost sales. In buffets,

there is also often no “sales” data. The wide variety of non-standardized raw ingredients, prepared

items, components, and final products in food production have traditionally necessitated manual

measurement and tracking, which makes measurement not economically viable. Recent advances in

AI/image classification technologies have the potential to automate this measurement.

Winnow Solutions, a UK-based company, has developed a digital food waste tracking system. There

are two versions of the system: the original “Winnow Classic” system and a more recently upgraded

“Winnow Vision” system. The Winnow Classic system comprises a digital scale and a connected

digital tablet that are retrofitted on existing trashcans in commercial kitchens. Whenever food is

thrown away in a trashcan, the weight of the item wasted is automatically recorded. The user is

then manually prompted to identify the item via an easy-to-use menu of options available on the

tablet and select the reason for the waste. Winnow Vision goes further and eliminates the need

for manual identification of the items wasted. The vision system includes a digital camera that

is inconspicuously mounted over the trashcan. Using modern AI/image classification algorithms,

the system automatically identifies what item is wasted to complement the weight measurement.

Food waste is automatically categorized, with little need for manual input. Overall, using Winnow

systems, kitchens can easily measure and stratify their food waste down to the level of each disposal

transaction, classifying waste as different items at different stages of preparation and processing.

The collected data is made available to kitchen managers in daily, weekly, and monthly site reports.

Kitchen managers also have access to a portal to dig deeper into the data and conduct further

analytics.

This study is based on a long partnership with Winnow Systems. In collaboration with Winnow

and with the data collected by the deployed Winnow systems at hand, in this study, we set out to

(1) Provide the first systemic census of the food wasted in different types of food service estab-

lishments;
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(2) Estimate the impact of the availability of detailed waste data on the amount of food wasted;

(3) Estimate the additional benefits, if any, from the AI/Image-classification-enabled automated

data collection and

(4) Identify the mechanisms that drive the benefits of data availability and AI-enabled automa-

tion of data collection.

Our study exploits the staggered deployment of the original waste recording system, Winnow Classic,

in hundreds of commercial kitchens and the subsequent staggered upgrade of some of these systems

to the automated Winnow Vision system. We provide causal estimates of the change in food waste

generated due to the adoption of the system and the subsequent upgrade. We also try to explore the

potential mechanisms that lead to the change. We use the synthetic difference-in-difference method

(SynthDiD) with staggered treatment times (Berman and Israeli 2022, Porreca 2022) to identify

the effect of the adoption and that of the upgrade. This method allows us to overcome several

identification challenges arising from the infeasibility of running large-scale, randomized controlled

trials in the field where the subjects are many different firms. We confirm the robustness of our

results using several other methods.

To explore the mechanisms of action, we utilize a machine learning classifier to detect behavioral

patterns from waste data and compare the patterns before and after the adoption/upgrade. Specif-

ically, we develop a time-series classifier based on the long-short-term-memory fully-convolutional

networks (LSTM-FCN) algorithm. Based on the waste data collected, this classifier allows us to

identify, with high accuracy, the incidence of common behavioral biases. We then use the DiD ap-

proach to examine whether this incidence changes on account of the adoption/upgrade of Winnow.

Overall, our analysis sheds light on how information collection enabled by digital technologies and

AI can influence the management of food waste, or, more generally, how AI and digital technologies

can help better management of inventories and operations in fast-paced, dynamic, high-uncertainty,

high-obsolescence production settings.

Our main findings are:

Census of Food Waste. Our census of food waste gives us a sense of the extent of food waste in

establishments. We find that the average pre-adoption waste level of buffets is nearly six times

higher than that of counter-service and double that of table-service settings. They waste 2042,

358, and 826 grams/cover, respectively. Hotel-based food service establishments waste more than

double that of independent restaurants (2361 vs. 856 grams/cover), which, in turn, waste more

than double that of quick-service, staff, and healthcare food service settings (422, 260, and 342

grams/cover, respectively). Most food waste originates from leftover/expired inventory (48%: 40%
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prepared food and 8% raw), followed by food trimmings, plate waste, and cooking & handling errors

(14%, 10%, and 7%, respectively).

Impact of Adoption and Upgrade. We find that, on average, kitchens that adopted the Winnow

Classic system produce 23% less food waste than they would have otherwise produced two months

after adoption. This figure rises to 29% three months post-adoption. Notably, this reduction happens

without any corresponding decrease in sales. Further, on average, the sites that upgrade to the

computer-vision-based Winnow Vision experience an additional food waste reduction of about 26%

nine months post-upgrade, rising to about 30% twelve months post-upgrade (also without any loss in

sales). To put this in perspective, ambitious food service establishments have set targets to halve

their food waste within a decade (World Resources Institute 2016). By adopting Winnow Classic,

a commercial kitchen could achieve a 29% waste reduction in a mere three months! With Winnow

Vision, the 50% reduction goal could likely be achieved within a year. In other words, a simple

monitoring system can bring remarkable food waste reduction benefits and provide a clear path to

meet even very ambitious climate goals. Note that these reductions are achieved with no revenue

changes and a significant cost decrease. Thus, this brings about a win for the business and the

environment, all achieved by using digital technology and AI.

Heterogeneous Effects. To sharpen our findings and make them generalizable to a wider variety of

food service establishments, we explore how the above impacts vary by site characteristics. Three

months post-adoption, smaller establishments see almost double the reduction compared to larger

ones (42% for those serving below 800 covers per day vs. 22% for those above). Buffets also see

a higher reduction than table sites (36% vs. 26%, respectively). Sites with very low or very high

demand variability (coefficient of variation below .5 and above 1, respectively) also see a higher

reduction than those with medium demand variability (42% for high- and low-variability sites vs.

25% for medium-variability sites). Similar to the effect of Winnow Classic adoption, one-year post-

vision upgrade, smaller sites (buffets) experience double the reduction compared to larger sites

(restaurants) on account of the upgrade: 21% vs. 57%.

Mechanisms–Adoption. We find that the primary driver of the waste reduction due to the adoption

of Winnow Classic is the significant decrease in the leftover inventory of prepared and raw food items.

These are about 32% down, on average, in three months. The reductions in other kinds of food

waste (trimmings, cooking errors) are less pronounced. Using our machine-learning-based classifier,

we next attempt to provide some evidence on the behavioral phenomena that drive waste reduction.

We measure the change in how often the inventory decisions are biased away from optimal decisions

in several specific ways previously identified in the behavioral inventory management literature. We
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observe that the waste reduction on adoption comes with a significant decrease in the likelihood

of demand chasing. Three months post-adoption, we observe a 23% reduction in the incidence of

demand chasing, with a corresponding increase in the likelihood of having waste outcomes consistent

with optimal/bias-free decision-making. The incidences of the other biases (overreaction, static

production plans) do not experience a significant change.

Mechanism–Upgrade. We find that within a year, the Winnow Vision upgrade significantly decreases

leftover inventory, cooking errors, and trimmings (30%, 21%, and 43%). These additional benefits

come from a better “quality” of information. Interestingly, with Winnow Classic, on average, only

3% of food waste “events” are uncategorized. However, these 3% of waste events account for about

26% of the total waste amount by weight, suggesting that when large amounts of food waste are

generated, manual operators do not categorize these large waste transactions. Winnow Vision,

however, leaves no option not to categorize such waste events. Our data shows a virtually complete

categorization of all waste (by number of events or by weight) after the upgrade. In effect, the

automated vision system prevents large waste events (be it massive overproduction/over-purchase

or cooking errors) from being hidden by incomplete manual entries. The ability to see and control

these large waste events perhaps drives the additional food waste reduction in leftover inventory

and cooking errors (and, as a result, the corresponding reduction in trimmings) that we observe

on account of the vision upgrade. We do not see a significant change in the behavioral biases

after the upgrade, likely because the additional events captured by the vision system are larger

straightforward errors (inventory and cooking) and have less to do with the managerial response to

demand changes.

Finally, we see some changes in the consumer-level waste—an average 16% plate waste reduction

three months after Winnow Classic adoption and an additional 18% reduction one year after the

Winnow Vision upgrade. Although these reductions are not statistically significant and their genesis

is unclear, these observations suggest that kitchen managers are able to influence the consumer-

driven portion of food waste as well, possibly by reducing portions, changing plate sizes, etc.

Our study has important implications for practicing managers and for building our understanding

of the use and effectiveness of technology in production and service operations.

For practitioners in the food service, hospitality, and other related industries, the implications are

clear. The broad insights from our food-waste census on the prevalence, genesis, and variation of

food waste provide a report of the status quo at food-service establishments and suggest clear im-

provement paths. Our estimates provide rigorous benchmarks on the potential benefits of adopting
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Winnow or other food waste monitoring technologies.1 Sites similar to the ones in our sample can

reasonably expect to achieve environmental and financial outcomes like the ones estimated in our

study. Our results on the effect heterogeneity can help potential adopters obtain sharper bench-

marks based on the particular characteristics of their food operation (size, service type, and demand

variability).

For practitioners in other industries, while our estimates may not be representative of the achievable

gains, the structural phenomena identified in our study are likely to continue to hold: Using digital

technology to monitor excess inventories in production and service systems reduces excess inventory

on account of lower incidences of behavioral biases. Automated classification reduces the ability of

employees to disguise large-impact errors, among other findings.

For civil society organizations, policymakers, and multilateral institutions that are working on cli-

mate goals and reducing food waste, our work provides an evidence-based, low-cost, profit-increasing

path to achieving very significant reductions in carbon emissions.

For the technology, AI impact, sustainability, and operations management research communities, our

work advances our understanding of how technology mediates better operational and environmental

outcomes. To the best of our knowledge, we provide the first field evidence on how the availability

of digital information on leftover inventories changes these outcomes, and the particular behavioral

biases that drive the gains. We also provide the first real-world evidence of the benefits of using

AI to increase operational efficiency and the potential pathways. Methodologically, our machine-

learning-based time-series classifier is a new method for the online detection of biases in inventory

operations, a sort of AI-driven warning system.

2. Literature Review

Our paper contributes to ongoing research streams that study (1) food waste and sustainable oper-

ations management, (2) perishable inventory management, (3) digital-technology-enabled interven-

tions, and (4) AI and productivity.

2.1. Food Waste & Sustainable Operations Management. Prior studies have examined food

waste at different tiers of the food supply chain. At the retail level, Akkas et al. (2018) first identified

the drivers of in-store product expiration using large-scale data. Akkas (2019) analyzes the impact

of allocated shelf space on product expiration and formulates a shelf space selection problem. Via

structural econometric modeling, Sanders (2020) evaluates the welfare of two potential remedies for

food waste in grocery retail: dynamic pricing and organic waste landfill bans. More recently, Akkas
1Most of the existing food waste tracking solutions are very similar to Winnow. Like Winnow, they provide (almost
identical) tracking/descriptive feedback.
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and Honhon (2022) study how shipment policies (i.e., the rules to determine the quantity and age

composition of inventory to ship from a warehouse to a retail location) affect profits and waste.

Yang and Yu (2023) study surprise clearance as a novel scheme to increase retail profit and reduce

food waste. Keskin et al. (2023) quantify the value of blockchain-enabled freshness transparency

by examining retail profit growth and food waste reduction brought by blockchain adoption. In

addition to the retail-level waste that these studies consider, Belavina et al. (2016) examined food

waste generated by households when comparing the financial and environmental performance of

different revenue models offered by online grocery retailers. To explore the environmental impact

of introducing an online channel, Astashkina et al. (2019) assesses food waste in the entire supply

chain—at the supplier, retailer, and consumer tiers. Furthermore, Belavina (2021) studies the

impact of grocery store density on retailer and household waste.

We contribute to the growing food waste literature by examining the waste generated at food service

establishments. We estimate the reduction in food waste from the deployment and upgrade of a

technology that digitally records instances of food items discarded in a commercial kitchen. We

also shed light on the mechanisms that drive this impact.

2.2. Perishable Inventory Management. Our work also relates to the perishable inventory man-

agement literature. Nahmias (2011) and Karaesmen et al. (2011) provide complementary reviews

of advancements in the OM research on perishable inventories, with a focus on the computation

of optimal and heuristic ordering policies. Many studies also explore markdown management. For

example, Li et al. (2016) and Hu et al. (2016) study joint replenishment and clearance sales of

perishable goods. Going beyond the focus on optimal stocking levels in the literature, Astashkina

et al. (2019) and Belavina (2021) examine the perished inventories that result from these optimal

decisions and the associated carbon emissions via multi-echelon perishable inventory models with

spatially distributed agents. Further progress on the impact of incorporating food waste into supply

chain decisions, however, has been stalled by the unavailability of inventory-age data, in practice.

As such data becomes more readily available, there will be a push toward the development of new

algorithms for better management of perishables (Akkas and Gaur 2022). With the first-of-its-kind

data, we contribute by providing statistics on the nature of food waste in commercial kitchens, quan-

tifying the waste reductions on account of detailed waste information gathering and shedding light

on how the information feedback on food waste can influence perishable inventory management.

2.3. Digital Technology-enabled Interventions. There is extensive literature studying the im-

pact of implementing technology-enabled interventions. Pierce et al. (2015) finds that the imple-

mentation of a monitoring system (enabled by back-office technology) reduces employee theft and
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improves productivity in a casual restaurant setting. Staats et al. (2016) explores the effectiveness

of RFID-based electronic monitoring on hand hygiene compliance in hospitals and its persistence.

Anderson and Kimball (2019) document increased student learning performance due to teachers’

use of performance measurement systems for diagnosing and remediating problems in students’

daily learning. Soleymanian et al. (2019) study how driving behavior is affected by participating

in the telematics-based usage-based insurance (UBI) program, where drivers receive real-time feed-

back about their driving behavior in exchange for potential discounts on future premiums from

auto insurers. They also show that after UBI adoption, UBI users drive safer. Berman and Israeli

(2022) demonstrate an increase in online retailers’ revenues post-adoption of a descriptive analytics

dashboard. Our research examines the change in food waste in commercial kitchens due to the

use of Winnow systems. This system enables granular capture and feedback on the amount and

the origin of the food wasted. We, thus, contribute to the OM literature that studies the impact

of various technology-enabled interventions, such as monitoring and feedback, to drive operational

improvements.

2.4. AI and Productivity. Recent years have witnessed a surge in the development of AI to

assist human users across diverse domains (Furman and Seamans 2019). Existing research on

AI applications revolves around two primary areas: 1) AI for automation, such as automating

repetitive data entry processes, fluent text generation, and improving data accuracy (Defize et al.

2022, Babina et al. 2024); 2) AI-co-pilots for feedback or advice, such as AI-assisted medical diagnosis

and other applications based on Large Language Models (LLMs) (Brynjolfsson et al. 2023, Otis

et al. 2024). Numerous studies have provided valuable insights into the effectiveness of different

ways to incorporate AI tools in the decision-making processes of managers across various domains,

spanning project management (Beer et al. 2022), healthcare (Liu et al. 2022, Lin et al. 2023), retail

(Kawaguchi 2021, Sun et al. 2022), procurement (Cui et al. 2022), idea generation (Girotra et al.

2023), transportation (Cui et al. 2023), consulting (Dell’Acqua et al. 2023), freelance work (Hui

et al. 2023) and law (Cohen et al. 2023). Our research is in the same stream but focuses on a

new context— the use of computer vision-based food waste information gathering in the context of

production operations.

3. Institutional Context

Our study estimates the impact of granular (AI-enabled) food-waste recording on the amount of

food waste generated in commercial kitchens. In particular, we consider kitchens of standalone

restaurants as well as kitchens of food-service establishments in hotels, hospitals, corporate offices,
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resorts, casinos, cruise ships, and retail stores. Some establishments in our study have only one

kitchen, while others are multi-location chains with several identical kitchens run by the same

company.

A typical commercial kitchen is a fast-paced environment, and relative to mechanized production

facilities that are the focus of most operations management research (for ex., those for cars, elec-

tronics, etc.), there is far less standardization, automation, and optimization. These kitchens are

staffed with cooks and managers, who often have limited operations training or the time to optimize

the operations; the focus is on food taste and presentation. Quality management programs that are

standard in other facilities are rare. Most importantly, in a typical kitchen, there is no instrumen-

tation of the production processes, and as such, there is very little in-process data. It is common

for a kitchen offering a buffet service to have no data beyond the basic raw materials ordered on

a weekly or monthly basis. Table-service kitchens may also have access to point-of-sale data, but

even in these cases, the SKUs sold are often not well standardized, and there is rarely an accurate

mapping between final goods and the semi-prepared items and raw materials that go into them.

Our study is built around the rollout of a new information-gathering system, developed by Winnow

Solutions. The Winnow system records the food items thrown in the trashcans deployed in a kitchen.

There are two variants of the system—Winnow Classic, which is essentially a digital weighing scale

attached to a tablet, see Figure 3.1(a). Trashcans are placed on top of a Winnow scale, which allows

for accurate measurement of the weight of food items thrown in every use of the trashcan. Users

can use the attached tablet to record specific food items thrown in the trashcan and the reason why

the item was thrown— unsold prepared food, inventory spoilage, cooking & handling errors, waste

from preparation (such as trimmings), or food left on the consumer plates.

For recording the specific food item, users must use a menu-based system— to first identify the

category of the item (desserts, vegetables, etc.) and then the specific item. The list of items is

customized to each establishment, and is organized in a smart way, with the most likely items first

on the list, but given the large number of potential items, the user may need to click through several

times to record the item correctly, see Figure 3.2.

Winnow Vision is an upgraded version of this system. See Figure 3.1(b) that uses AI-based auto-

matic classification of the items thrown, drastically simplifying data entry. This version includes

everything in the classic system plus a small wide-angle camera that is motion-activated at the base

of the tablet assembly. The camera takes a picture of the trashcan right after the food is thrown.

This picture is compared with an older picture. The changes in the two pictures are then classi-

fied using a modern deep-learning-based image classification algorithm developed in consultation
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(a) Winnow Classic (b) Winnow Vision

Figure 3.1. Winnow Systems Demonstration

Figure 3.2. Two-Step (Category & Item) Data Entry Process on the Touchscreen

with the study authors. The algorithm is trained on manually-labeled food-waste images. Overall,

Winnow Vision can automatically classify food items with an accuracy level surpassing humans.

Data collected by Winnow is stored on Winnow’s cloud platform, which kitchen managers can

access. The platform shows various statistics of the items wasted. Kitchen managers also receive
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Figure 3.3. Winnow Reports

daily, weekly, and monthly reports via email, and they can access additional data via the cloud

platform (see Figure 3.3).

4. Theoretical Expectations

Our study estimates the effects of providing past food waste information to kitchen managers who

are responsible for making decisions around raw materials ordered, items prepared for cooking (work-

in-progress inventory) and the final amounts of food cooked and served. Each of these decisions can

be conceptualized as a multi-product, multi-period, perishable inventory system with continuous

review and non-stationary demand. Food waste information is the information on the left-over

expired inventory in preceding periods, inventory that arises as a function of the quantities produced,

demand, and food expiration.

Prior to the installation of Winnow, decision-makers in the system had access to (at best) limited

crude data on overall final item sales. The Winnow system uses modern digital technology and

AI/Image classification algorithms to provide granular product-level left-over-inventory information

to the decision-makers. In this section, we leverage past work in operations, economics, and psy-

chology to build a theoretical understanding around (a) the potential effects of providing additional

information to decision-makers, (b) the potential mechanisms of action for these effects, and (c)

how these effects vary between different settings.

4.1. Effects of Tech-Enabled Information Gathering.

Reasons to expect food waste reductions. Extensive work has shown that technology enabled infor-

mation gathering can improve performance across various domains, such as utilities (Thaler and

Benartzi 2004, Gaker et al. 2010), health (Staats et al. 2016, Kim et al. 2020), and transportation
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(Choudhary et al. 2021). The literature identifies four broad arguments for this, that we conjecture

are relevant in our setting.

First, technology adoption can remove information hurdles, complementing workers by freeing up

their cognitive capacity (Brynjolfsson and Hitt 2000, Hitt and Tambe 2016); we expect similar

effects with the Winnow system. Second, information saliency promotes better goal-setting and

induces greater effort (Anderson and Green 2018). As is shown in Bandura (2010), goals based on

one’s prior performance are deemed achievable through increased self-efficacy, and this increased

self-efficacy results in increased and persistent effort, which, in turn leads to better performance.

We conjecture Winnow increases information saliency and should promote better goal setting and

induce greater effort.

Third, feedback on prior performance also serves as a basis for evaluating one’s ability to success-

fully perform subsequent tasks (Bandura 1991). Given that human decision-making is often biased

(Tversky and Kahneman 1973), reporting prior performance is a low-cost intervention to exploit

human behavioral tendencies and thus initiate better decision-making. For example, Blader et al.

(2020) conducted a field experiment with a large US transportation company offering electronic

onboard recorders that report drivers’ performance automatically, and they found that provid-

ing feedback leads to better driving performance. Many studies in the behavioral OM literature

(e.g., Schweitzer and Cachon 2000, Bolton and Katok 2008) have also shown that in NewsVendor

games, when players are provided with feedback on realized demand and profitability after each

round, player performance improves. Although our setting is more sophisticated than the classic

lab-experiment-NewsVendor, and the information provided is more nuanced than that in the lab

experiments (leftover inventory as opposed to profits), we hypothesize that the Winnow system

provides important feedback on prior performance and will lead to performance improvements.

Fourth, the Winnow system can also be viewed as a monitoring tool. The mere presence of mon-

itoring may change user behavior by making individuals feel accountable for their now observable

actions. For instance, prior work has documented that simply making one’s action visible to oth-

ers may influence various categories of behavior ranging from voter turnout to employee theft in

restaurants (see Gerber et al. 2008, Pierce et al. 2015). Additionally, monitoring may signal man-

agement’s commitment to process compliance. Winnow is, in effect, an employee monitoring tool,

and its adoption signals management’s ambition to reduce food waste.

Overall, we expect that the Winnow system will remove information hurdles and free up cognitive

capacity, increase information saliency to promote more goal setting and induce greater effort,

provide inventory managers with performance feedback and signal the priority management places
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on food waste and holding individuals accountable for their actions related to food waste. The

combination of these effects should lead to a reduction in food waste after the installation and use

of the Winnow system.

Reasons to expect food waste increases. Notwithstanding the benefits of technology-driven interven-

tions, there are some additional concerns. Information provided by new technologies can be often

classified into four categories (Lismont et al. 2017): (i) descriptive (what happened), (ii) diagnostic

(why did it happen), (iii) predictive (what will happen next), and (iv) prescriptive (what should

be done about it). Whereas the potential benefits of predictive or prescriptive technology that uses

sophisticated modeling have been well-studied (e.g., Wedel and Kannan 2016, Bradlow et al. 2017),

the value of descriptive information (as is the information from the Winnow system in our study) is

questionable, as receivers may misinterpret and fail to turn them into actionable insights (Berman

and Israeli 2022). Kluger and DeNisi (1996) found in their meta-analysis that 38% of the studies

report a negative effect of feedback information on performance. Concurring with their findings,

several recent studies have demonstrated feedback’s inefficacy in improving user performance. For

example, Rolim et al. (2017) observed that bus drivers do worse after real-time feedback because

they only focus on some safety parameters while overlooking others. There is an additional psycho-

logical concern. Technology-driven high-resolution data collection can play the role of a monitoring

tool, but it can also be perceived as invasive and a signal of distrust by management, which could

result in reactance or reduced compliance (Frey 1993, Bernstein 2012). This effect is likely to be

quite salient in commercial kitchens. As Lemos (2019) summarizes, chefs are extremely busy run-

ning demanding commercial kitchens and do not have the time or patience to invest in the right

initiatives. Also, chefs usually have worked in the industry for a long time and might feel suspicious

about the outside intervention and invasive monitoring.

Overall, sound arguments and evidence from other settings indicate that leftover inventory or food

waste information from prior periods should reduce food waste. At the same time, arguments and

prior evidence suggest that simple descriptive information can be harmful in settings like commercial

kitchens. We speculate that the positive effects dominate. In other words, we believe that having

detailed food waste information from prior periods should reduce the amount of food waste generated,

though we don’t hold this opinion strongly.

From a practical commercial point of view, the effect’s direction is insufficient. The real concern is

more nuanced— what is the extent of the benefits of food waste monitoring systems, in commercial

kitchen settings, if any? In line with this practical concern, we will design our study to measure
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the level of the benefits/losses of these information-gathering systems rather than just assess the

direction.

4.2. Correction of Inventory Management Biases. The factors discussed in Section 4.1 pertain

to the role of additional information in a generic decision-making task. We next delve into the

specific case of inventory decisions. The value of additional information in inventory management

decisions manifests itself primarily via a better understanding of the demand. Behavioral operations

management researchers have identified that inventory managers often misuse demand information

(Kremer et al. 2011). In particular, the literature has identified three common biases. First,

inventory managers may not respond sufficiently to demand variability. That is, they follow simple

heuristics or rules of thumb and produce a certain amount of food without sufficient adjustment in

accordance with demand changes when making decisions (see Kahneman et al. 1982, Su 2008, Gino

and Pisano 2008). We refer to this decision bias as a static production plan. Conversely, inventory

managers may overemphasize demand signals by demand chasing (Schweitzer and Cachon 2000, Lau

and Bearden 2013, Kirshner and Moritz 2020) such that the order quantities are adjusted towards

the demand in the prior period. Along similar lines, managers may overreact to demand changes

(Watson and Zheng 2008) such that the order quantities are increased/decreased in response to

the sharp demand increase/decrease in prior periods. We describe these further in Section 8.2 and

Appendix A.7.

In commercial kitchens, contemporaneous demand realizations are often not observed (for example,

in buffet-type settings), are observed by different decision makers (for example, the commercial

manager rather than the chef or kitchen manager who makes inventory decisions), or are observed

with a significant lag. The Winnow system makes leftover inventory information very salient to the

kitchen manager. This information combined with direct knowledge of the recent inventory decisions

made can allow inventory managers to get a better sense of the recent demand realizations. As such,

we conjecture that the installation of the Winnow system and the information gathered by it would

limit the incidence of the three behavioral biases.

4.3. Effect Heterogeneity. Beyond the average effect of information, there may also be significant

differences in the effects amongst different kinds of food service establishments. One potential cause

of such heterogeneity is the site size. The larger sites enjoy the benefits of statistical pooling and,

as a result, experience less waste per meal served. Also, they might be able to better optimize their

operations. Thus, we expect smaller sites to benefit more from Winnow.

Service type (buffet-, table- or counter-type restaurants) may also drive the heterogeneity in the

effects of Winnow. A wide variety of foods are often served at buffets, making item-level information
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gathering very challenging. Also, the buffets’ make-to-stock strategy is much more vulnerable

to inaccuracies in demand forecasts (Wu and Teng 2023), compared with table- or counter-type

restaurants. Thus, we expect buffets to benefit more from Winnow (as compared with table- or

counter-type restaurants).

We also consider how different levels of demand variability may lead to different outcomes. When

the service level is sufficiently high, as typical in food service establishments, higher demand uncer-

tainty induces higher inventories (Rubin 1980, Gerchak and Mossman 1992, Song et al. 2009) and,

as a result, food waste. Thus, sites with higher demand uncertainty might expect more benefits

due to Winnow adoption. Further, the deployment of Winnow systems could make demand vari-

ability management more effective by providing incremental (waste) information. This additional

information could allow users to keep revising their demand forecasts and partially resolve the faced

uncertainty over time (Graves et al. 1986, Heath and Jackson 1994, Chen and Lee 2009). Finally,

it is likely that establishments with lower demand variability might be able to use this additional

information with higher precision. As a result, the impact of demand variability on waste reduction

outcomes is uncertain, and the sites with lower or higher demand variability might see more benefits

from Winnow.

4.4. Effect of AI/Computer Vision. AI is revolutionizing data capture (Defize et al. 2022).

Traditional data entry can be time-consuming and error-prone. Winnow Classic requires the user

to identify the item thrown in the trashcan and manually indicate what is being wasted. Such

manual entry is labor-intensive and demands significant time and effort. Further, humans are prone

to errors. Even the most diligent data entry operators can make mistakes and miss entries; this is

much harder for busy kitchen staff. AI algorithms, on the other hand, can automate repetitive data

entry processes and improve data accuracy (Babina et al. 2024). The Winnow Vision system uses

a modern deep-learning-based based image-classification algorithm to automate waste information

gathering. The AI-enabled system recognizes the item thrown from images captured with high

accuracy, delivering more accurate data with minimal effort. Automation is a massive boost to

efficiency. By taking repetitive tasks off the plate, Winnow Vision users can free up time to focus

on other aspects of their work, which will arguably lead to better waste categorization by origin,

more engagement with the collected data, and enhanced productivity in the kitchen.

Overall, the addition of a computer vision element should provide better data quality, reduce human

errors, improve waste data accuracy, and increase general comfort with the use of the Winnow

information-gathering system. However, the literature also presents some competing arguments—

humans can be averse to the input from algorithms (e.g., see Dietvorst et al. 2015, Dietvorst and
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Bharti 2020). Cao and Zhang (2020) also provided first-hand field evidence that human workers

are reluctant to adopt AI. This aversion and reluctance to AI and automation may make inventory

managers distrust or ignore the data provided by the Winnow Vision system. That said, our setting

is somewhat different from the cases mentioned above in that AI is used to help achieve managers’

professional and prosocial goals (e.g., to run a more efficient and sustainable kitchen) rather than

substitute them. As such, we expect Winnow Vision to achieve further reductions over and above

Winnow Classic’s.

5. Data

Our data spans 876 sites from 71 different food service establishments that installed the Winnow

Classic system in a staggered way between May 2016 and Nov 2019.2 A typical food service estab-

lishment operates kitchens at multiple different sites. At each site, the rollout begins with a blind

period that lasts between two weeks and four months; the installed system collects baseline data

for Winnow’s internal use, while the site operates as usual and does not have access to this data.

There is no involvement from the kitchen staff other than throwing food in the trashcan as before.

The blind period is designed to ensure that the kitchen staff does not notice any changes in the

operation and that the tablet and other items are disguised. After the blind period, the system is

officially activated. From this point, the staff gains access to real-time feedback on the items thrown

in a shift and all archival data via periodic reports and a data portal.

After using the Classic system for a while, some sites upgraded to the Winnow Vision system,

eliminating the need for manual entry. In the initial days after the upgrade, photos taken by

the camera were manually labeled at the backend by the Winnow team to generate site-specific

training data and validate algorithm performance at the specific site. All sites eventually have a

custom-trained, fully automated computer vision system that automatically identifies the specific

item thrown in the trashcan.

The Winnow system logs every item thrown in trashcans at participating sites. These “waste events”

constitute our primary data. Overall, there were 12,828,147 waste events in the study period. For

each waste event, we have the weight of the item thrown, the exact item thrown (obtained by manual

entry in the classic system and by computer vision in the vision system), and a manually entered

reason for the waste— unsold prepared food, inventory spoilage, trimmings, cooking & handling

errors, or plate waste.

2We limit our study to installations prior to the breakout of COVID-19 as COVID disrupted operations and led to
downsizing and wide shutdown in many commercial food service establishments.
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Variables Mean Standard Dev. Min Median Max N
Daily total waste (weight) grams 386,007 648,657 10 185,840 37,820,840 404,763
# of meals served daily (covers) count 1,939 1,727 1 1,416 24,844 404,763
Daily sales (sales) US dollars 13,555 11,745 1.07 10,934 348,941 404,537
Demand variability (demand_cv) coef. of variation 0.2440 0.2429 0.0011 0.1856 2.8284 397,029
Waste per cover (waste_per_cover) grams/cover 544 1,908 0.0021 142 165,800 397,029

Table 1. Summary Statistics

We supplement this waste data with the manual collection of data on the type of food service estab-

lishment each site was associated with— hotel, restaurant, staff restaurant, quick-service restaurant,

or healthcare facility. Restaurants dominate our sample (75.5%), but we also have hotels (11.1%),

staff restaurants (3.5%), quick-service restaurants (1.1%), and healthcare facilities (0.2%). Finally,

we observed and recorded the type of service each site offered— buffet, counter, or table service. In

our sample, table service is the most common (70.2%), whereas 18.5% of the sites are buffets and

3.5% are counter services.

We aggregate the raw waste data at the day-site level. Waste in grams at site i on day t is captured

by weightit; waste_per_coverit is the normalized version of this waste measure, computed as

weightit divided by the number of covers served at site i on day t.

We capture the variability in the site’s demand by computing the coefficient of variation based on

historical daily sales data:3

demand_cvit =
demand_stdit
demand_meanit

≈

√√√√∑
k∈Ωi,t

(
salesi,k −

∑
h∈Ωit

salesi,h
/
|Ωi,t|

)2
|Ωi,t| − 1

/
(
∑

h∈Ωi,t

salesi,h)

where Ωit = {salesi,t, salesi,t−1, ..., salesi,t−6}.

Table 1 presents the summary statistics.

Additionally, Figure 5.1 (a)-(d) depicts the distributions of the key variables. Figure 5.1(e)-(h)

visualize the pre-adoption waste statistics by site type and service type, respectively. The average

pre-adoption waste generated at buffets is nearly six times higher than that of counter service

and almost double that of table service settings. They waste 2042, 358, and 826 grams/cover,

respectively. Hotels waste more than double that of restaurants (2361 vs. 856 grams/cover), which

3Ideally we would construct this variability measure from historical demand data, but what is observed here is only
censored demand data, i.e. sales. It is typical in industry to use sales rather than demand (see Schleifer 1995, Cachon
and Terwiesch 2012), as such sales data is all that is available to the site managers (and us). With the high service
levels typically provided by food-service establishments, we expect that demand censoring does not significantly alter
this variable.
We also ran our analysis with demand variability variable constructed using past sales on only the same day of the
week data (following Jain et al. 2013, see below): Ωit = {salesi,t, salesi,(t−7∗1), salesi,(t−7∗2), salesi,(t−7∗3)...}. Our
main results continue to hold under this alternative specification.
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Figure 5.1. Distributions of Main Variables

themselves waste more than double that of quick-service, staff, and healthcare facilities (422, 260,

and 342 grams/cover, respectively).

The composition of the pre-adoption waste is: unsold prepared foods (40%), raw inventory spoilage

(8%), cooking & handling errors (7%), plate waste (10%), trimmings (14%), and uncategorized

(21%), see Figure 5.2. That is, on average, 48% of the total daily pre-adoption waste at an individual

site is due to leftover inventory (prepared or raw).

6. Empirical Strategy and Identification

6.1. Identification Challenges and Method Selection. To establish the causal effects of Win-

now treatment based on our observational data, we have to overcome the following identification

challenges. First, every site in our data in each time period is either treated or untreated, and the

counterfactual outcome in the alternate condition is not observed. Second, sites adopted Winnow at

40%

8% 7% 10%
14%

21%

unsold prepared
foods

inventory
spoilage

cooking errors plate waste trimmings uncategorized

Figure 5.2. Pre-adoption Waste Breakdown
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different times. Third, the decision of when to adopt Winnow might be endogenous (adoption may

be chosen at the time when the highest gain is expected); this would bias our estimates upwards.

To address these identification challenges, we explored several methods. First, we naturally con-

sidered using a Difference-in-differences (DiD) estimator. As a quasi-experimental method, DiD

assesses the impact of an intervention in the absence of exogenous variation by setting up compari-

son groups (control/treatment group) and measuring the change in an outcome between a pre-and

post-intervention period when only one of the groups has access to the intervention (Bertrand et al.

2004), thus addressing challenge (1). It also allows for variation in treatment timing (see de Chaise-

martin and D’Haultfoeuille 2020, Sun and Abraham 2021, Goodman-Bacon 2021, Callaway and

Sant’Anna 2021), enabling us to resolve challenge (2). However, the parallel trends assumption

that implies the difference between the treatment and control group is constant over time in the

absence of treatment, is crucial for identification. It is equivalent to assuming that the inclusion of

time-specific and unit-specific fixed effects in the model completely controls for all confounding re-

lationships between the treatment and the outcome, other than the desired causal treatment effect.

Data from observational studies, unfortunately, rarely exhibit parallel trends for the treatment and

control group, thus leaving challenges (1) and (2) unaddressed.

To alleviate this concern, we consider more recent methods that seek to compensate for the lack of

parallel trends. The Synthetic Control (SC) method “recovers” parallel trends by finding a weighted

combination of untreated units such that the pre-treatment trends of this weighted combination

of the untreated units are matched with that of treated units. It was first developed for a single

treated unit (see Abadie 2005), and, in recent years, has been extended to a staggered rollout setting

(see Ben-Michael et al. 2022). Synthetic difference-in-differences (SynthDiD), is a doubly robust

estimation method that combines attractive features of both SC and DiD methods (Arkhangelsky

et al. 2021). Like SC, this method reweighs and matches pre-treatment trends. Like DiD, it is

invariant to additive unit-level shifts in outcomes and allows for inference with large panels even

when the pre-treatment period is short. Intuitively, SynthDiD reweighs the unexposed control units

to make their time trend parallel (but not necessarily identical) to that of the treated in the pre-

intervention, and we then apply a DiD estimator to this reweighed panel (thus addressing challenges

1 and 2).

In addition, when it comes to challenge (3) of endogenous adoption timing, SynthDiD overcomes

this as well. SynthDiD is consistent even in the presence of an unobserved correlation between

treatment assignment and site-level time trends. Our concerns about timing endogeneity were

further alleviated as we worked with the Winnow team to roll out the device in a deliberately
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random way by ensuring that adoption/upgrades did not start with more tech-savvy sites, sites

with early adopter managers, or sites in more environmentally conscious locations.

In sum, the synthetic difference-in-differences method allows us to resolve the identification chal-

lenges and establish a causal effect of the adoption/upgrade of Winnow. We use it as our main

empirical strategy throughout the paper.

SynthDiD allows us to overcome identification challenges and provides a causal estimate of the

Winnow system’s effect on kitchens that adopt it. That is, we are able to causally establish the

average treatment effect on the treated (ATT). When interpreting our estimates as an average

treatment effect (ATE), caution should be exercised. In any setting where all the units are treated

eventually, such as ours (all sites eventually adopted Winnow), the adopters may differ from the

unobserved non-adopters. This might cause a selection bias when interpreting our estimates as ATE

(i.e., generalizing to the entire population). We first note that selection bias concerning an earlier

selection into the treatment of the higher-expected-benefit sites is directly handled by SynthDiD

(as we discuss in the solution to identification challenge 3).

Further, in line with the literature on technology adoption (see, for example, Berman and Israeli

2022), we argue that the average treatment effect on the treated (ATT) is a relevant and appropriate

measure in our case. First, currently, there are no reliable estimates of the effect of this technology

on food waste in commercial kitchens, even for the adopters. Moreover, because Winnow provides

simple tracking/descriptive feedback, benefiting from it requires active engagement with the data

collected and consequent data-driven decision-making (i.e., just like the adoption decision, these

actions are all endogenous as well). That is, even if sites were randomly assigned to adopt the

system, we do not expect to see any benefits without interest in engaging with the systems. As a

result, we expect that similar sites that are interested in the adoption of Winnow would see similar

outcomes and benefits in food waste reduction as those in our sample. In other words, we provide

a first-of-a-kind benchmark on the benefits an adopting site might expect for the firms interested

in employing such technology.

To help practitioners obtain a more precise benchmark of the effects, Section 7.3 explores effect het-

erogeneity with regard to various site characteristics. This is especially helpful because endogenous

adoption choice might yield a higher prevalence in our dataset of sites that achieve higher benefits

(firms that expect to obtain higher benefits might adopt with higher likelihood), resulting in higher

average estimates. Our heterogeneity analysis helps sites pinpoint a better site-specific benchmark

as per their specific characteristics.
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6.2. Synthetic Difference-in-Differences (SynthDiD). Synthetic difference-in-differences was

originally designed for a balanced panel of units where the treatment timing is identical for all treated

units. Like the most recent studies that allow for a staggered rollout design (see de Chaisemartin

and D’Haultfoeuille 2020, Callaway and Sant’Anna 2021, Ben-Michael et al. 2022), we perform

SynthDiD estimation with a staggered rollout. Following the literature (Callaway and Sant’Anna

2021, Berman and Israeli 2022), we estimate cohort-level treatment effects and then aggregate them

into an overall estimate. To perform the analysis, for each adoption cohort r, we construct a balanced

panel in which the treatment group comprises sites that adopted Winnow4 in period r and have

outcome data available lmin (< 0) periods before adoption and lmax periods after, and the control

group comprises sites that have data available for the same time frame but adopted Winnow at

least lmax periods after cohort r. If we denote by Nr, the set of units in the balanced panel of the

cohort r, by N co
r , the set of units in the control group, and by N tr

r the set of units in the treatment

group, then for each cohort r, the SynthDiD estimation procedure solves

(τ̂r, α̂0, α̂i, γ̂t) = argmin
τr,α0,αi,γt

{
∑
i∈Nr

r+lmax∑
t=r+lmin

(log(Yit+1)−α0−αi−γt−AfterAdoptit · τr)2ω̂iλ̂t}, (6.1)

where Yit is the food waste outcomes for site i in period t, α0 is an intercept, αi is unit- and γt is

the time fixed-effect, and AfterAdoptit indicates whether site i adopted Winnow by time period t.

Standard errors for each τ̂r are estimated using the jackknife method (algorithm 3 of Arkhangelsky

et al. 2021), or the placebo method (algorithm 4 of Arkhangelsky et al. 2021) if a cohort has only

one treated unit. The coefficient τr measures the average change in waste outcomes within the

lmax+1 periods after the adoption of cohort r. Equation 6.1 estimates a two-way-fixed-effect model

with the addition of unit-specific weights ω̂i and time-specific weights λ̂t. The unit weights ω̂i are

selected such that pre-treatment control outcomes weighted by ω̂i have a similar trend to that of

the average outcomes of the treated units, that is, for all time periods t < r, we have

ω̂0 +
∑
i∈Nco

r

ω̂i log(Yit + 1) ≈
∑

i∈Ntr
r
log(Yit + 1)

|N tr
r |

.

The time weights λ̂t are designed so that the weighted average of historical outcomes predicts average

treatment period outcomes for the same control units, up to a constant, that is, for all i ∈ N co
r , we

have
4Recall, the adoption of Winnow starts for a site once its blind period ends and the recorded waste data are accessible
to the site.
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λ̂0 +

r−1∑
t=r+lmin

λ̂t log(Yit + 1) ≈
∑r+lmax

t=r log(Yit + 1)

lmax + 1
.

The unit weights ω̂i serve the same role as in the standard synthetic control method to align the

pre-treatment trends in the outcomes of treated and control units. The time weights λ̂t balance

pre-treatment time periods with post-treatment ones. That is, if a specific pre-treatment period is

more predictive of post-treatment outcomes, it receives a higher weight.

Given these cohort-level estimators τ̂r, we can compute an overall treatment effect as a weighted

average. The weights are chosen to be the proportion of treated units that belong to each cohort.

As such, the staggered treatment timing SynthDiD estimator can be formulated as τ̂ =
∑

r µr τ̂r,

where µr =
Ntr

r∑
r N

tr
r

is the weight for cohort r. Practically, this estimator is simply a weighted average

of cohort-specific estimated average treatment effects, where the weight applied to any individual

cohort’s specific estimator is equal to the proportion of treatment group observations that originate

in a specific cohort. We utilize the property of influence functions for summary parameter estimators

to compute the standard error of τ̂ (see Appendix A.2 for more technical details).

7. Impact of the automated AI-powered waste monitoring system

This section provides our estimates of the waste reductions due to (1) the adoption of a waste

monitoring system and (2) the upgrade to AI-powered waste classification.

7.1. Effect of Winnow Adoption on Total Waste. We start by measuring the food waste

reductions due to the adoption of Winnow Classic via SynthDiD with a staggered rollout. We use

the later adopters’ blind period to create a synthetic control for each site. During the blind period,

food waste levels for the site are being recorded, but sites have no interaction with the system.

When the blind period starts and how long it lasts varies among sites (two weeks to four months).

To perform the analysis for each adoption cohort r, we first construct a balanced panel in which the

treatment group comprises sites that adopted Winnow in period r and have waste outcome data

available 15 days before adoption and 90 days after (i.e. lmin = −15, and lmax = 90), and the

control group comprises sites that have data available for the same time frame, but that adopted

Winnow after more than lmax periods after cohort r.

We drop any cohort r, for which the donor set used for the construction of the synthetic control

(i.e., the set of units in the control group) is empty. As a result, we obtained 79 cohorts involving

178 sites that adopted Winnow at different times between May 2016 and Nov 2019.5 We conduct

5We end up with fewer sites for measuring causal effect of Winnow adoption, because for several sites a synthetic
control cannot be constructed. We provide the summary statistics of the subsample in Appendix A.1. The sites from
the subsample are mostly the same as those from the whole sample, but are slightly bigger on average.
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Figure 7.1. Event-study Plots: Staggered Treatment of Winnow Adoption

After adoption
-0.1337
(0.0844)

-0.2673**
(0.1196)

-0.3459***
(0.1288)

†Reduction (%) 12.51% 23.46% 29.24%

Effect 1 month
(1)

2 months
(2)

3 months
(3)

Outcome Variable: log(waste_per_cover)

Notes. The table shows N-month ATT estimates from synthetic DiD model. Row (†) reports waste
reductions (%) for the N months post-adoption on average, which are transformed from each ATT
estimate. Significance level: 10% (*); 5% (**); 1% (***).

Table 2. Average Effects for the First {1, 2, 3}-months Post-Adoption

synthetic DiD analysis within each cohort and aggregate cohort-level ATT estimates into an overall

ATT estimate.

Figure 7.1 presents the dynamic event-study treatment effect estimates in each specific period ob-

tained via the SynthDiD method, along with their 95% confidence intervals (CIs). Appendix A.3

describes the methodology used to construct these event-study plots.

First, note that the SynthDiD method produces a nice pre-treatment fit between the trends of the

treated and the untreated. The post-adoption treatment effect estimates in Figure 7.1 (left) show

that food waste level significantly decreases within the first three months after Winnow adoption.

To make sure this waste reduction does not happen at the expense of sales, we run the same analysis

but using the sales data instead. Figure 7.1 depicts our findings: while we do see a clear downward

trend in waste (left), there is no such trend in sales (right).

Table 2 presents our estimates for the {1, 2, 3}-month6 SynthDiD ATTs, with standard errors in

parentheses. Table 2 columns (1)-(3) present the average effects for the first month, the first two

6We set lmax = {30, 60, 90} in Equation 6.1 for estimating {1, 2, 3}-month ATT, respectively.
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Figure 7.2. Event Study: Vision Upgrade Treatment

months, and the first three months post-adoption, respectively. The 2-month-ATT is estimated

to be at -0.2673 (95% CI: -0.5017, -0.0329), and the 3-month ATT is valued at -0.3459 (95% CI:

−0.5983, -0.0935).

Since the outcome variables are logged, an N-month ATT estimate x indicates an average decrease

of (1−exp(x))∗100% in food waste level for those Winnow adopters within N-months post-adoption.

That is, we see about a 23% decrease in daily food waste two months after adoption and a 29%

decrease three months after adoption! To put this in perspective, the food waste reduction goal set

in 2016-2020 by many nations, NGOs, and private sector firms is to reduce the waste in half by 2030

(in line with the United Nations’ Sustainable Development Goal Target 12.3, United Nations 2021).

For example, Hilton, Four Seasons, Sodexo, IKEA, Compass Group, and Chipotle all committed

to reducing food waste by 50% by the end of 2030 (Hanson 2016, Hilton 2020, Four Seasons 2022,

Compass Group 2023). That is, it is expected that it would take almost a decade to meet this goal.

By adopting Winnow Classic commercial kitchens in our sample, on average, achieved a 29% waste

reduction in a mere three months! As we will show later, further gains are possible with Winnow

Vision; the 50% goal can likely be achieved within a year.

7.2. Effect of Vision Upgrade on Total Waste. The second key event in our study is a staggered

upgrade of the installed Winnow Classic systems to the more sophisticated computer-vision-powered

system, creating a quasi-experimental setting for estimating waste reductions on account of the

upgrade to an AI-powered waste monitoring system. As before, we conduct SynthDiD analysis

but now on the waste sample before and after the vision upgrade. The pre-upgrade lags (lmin =

−12 months) and post-upgrade leads (lmax = 12 months) are used to create the panel. Figure

7.2 (a) presents the corresponding event study plot. It shows the pre-treatment fit between the
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treatment and control units as well as the evolution of the treatment effect in each time period.

The SynthDiD method matches the treatment and control units such that the difference between

them is indistinguishable from zero for all pre-treatment periods.

Table 3 presents the estimated N-month SynthDiD ATTs (standard errors are in parentheses).

Columns (1)-(4) of Table 3 present the average effects for the first 3, 6, 9, and 12 months post-

adoption, respectively. The 9-month’s ATT is -0.2964 (95% CI: -0.5275, -0.0653), the 12-month

ATT is -0.3570 (95% CI: −0.6175, -0.0965). These negative estimates suggest there is a significant

additional effect of bringing AI into commercial kitchens on food waste reduction. On average,

12-month months post-adoption, an upgrade to the computer vision based Winnow Vision yields a

further 30% waste reduction.

7.3. Heterogeneous Treatment Effects: Winnow Classic. We next explore whether the waste

reduction outcomes differ across sites. In particular, we examine whether the estimated (period/site)

treatment effects of Winnow Classic τ̂it (as described in Section A.4) differ based on site size, service

type, and demand variability.

The Winnow Adoption column of Table 4 reports our estimates. Here indicator variable Small_size =

1 for sites serving less than 800 covers per day and average. Large_size = 1 for sites serving above

800 covers (the median value in our sample). Buffet = 1 if the site offers buffet service and

Table = 1 if the site offers table service. When the site demand’s coefficient of variation is below

0.5, we set the indicator variable Low = 1; when it is in the 0.5 to 1 range, Medium = 1, and

when it is above 1, we set High = 1. To control for changes in food waste over time, we include

a time trend (Log(usage_time)). As expected, we see the negative and significant coefficient on

Log(use_time) consistent with our findings from Section 7.1, which indicate a greater effect over

time.

After upgrade
-0.1397
(0.1357)

-0.2017
(0.1546)

-0.2964**
(0.1179)

-0.3570***
(0.1329)

†Reduction (%) 13.04% 18.27% 25.65% 30.02%

Effect
Outcome Variable: log(waste_per_cover)

3 months
(1)

6 months
(2)

9 months
(3)

12 months
(4)

Notes. The table shows N-month ATT estimates from synthetic DiD model. Row (†) reports further waste reductions (%) for the N
months post-upgrade on average, which are transformed from each ATT estimate. Significance level: 10% (*); 5% (**); 1% (***).

Table 3. Average Effects for the First N Months Post-upgrade
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Site-Size. The negative and significant coefficient on Small_size indicates that a greater Winnow

effect is associated with smaller food service sites than big ones. Three months post-adoption,

smaller sites, on average, enjoy about a 20% higher reduction in food waste than bigger sites (42%

vs 22%). This more pronounced effect for smaller establishments may happen because the larger

sites enjoy the benefits of pooling and, as a result, experience less waste per meal served. The larger

sites might also be able to better optimize their operations.

Service-Type. The negative and significant coefficient on the indicator variable Buffet implies that

buffet sites gain more benefits of waste reduction from Winnow adoption than table sites. Three

months post-adoption, buffets, on average, enjoy a 10% higher reduction compared to table sites

(36% vs 26%). This more pronounced effect for buffets is likely due to the higher value of the

feedback in the make-to-forecast production systems.

Demand Variability. Because there are different mechanisms that might be in effect on the low

and high sides of the variability spectrum (see Section 4.3) we divide sites into three groups (low,

medium, and high). The negative and significant coefficients on the indicator variables Low and

High indicate that sites with low or high demand variability both benefit more from Winnow than

sites with medium demand variability. High variability sites have more to gain from the feedback,

while low variability sites can be more precise in the use of the signal. Three months post-adoption,

275
22

    High  (=1)

N_observations
N_site
*** -- 1% level, ** -- 5% level, * -- 10% level
Large_size is dropped as the reference level for site size, Table for service type, and Medium for demand variability. 

0.6241***
(0.0490)

-0.1539***
(0.0103)

-0.2206***
(0.0230)

-0.1034***
(0.0235)

-0.1897***
(0.0307)

-0.2165***
(0.0673)

13,713
177

0.5162
(0.5131)

-0.1958**
(0.0781)

-0.4411***
(0.1273)

-0.3724**
(0.1863)

-0.2643
(0.4951)

Constant

Log(usage_time)

Indicators for site size

    Small_size  (=1)

Indicators for service type

    Buffet  (=1)

Indicators for demand variability

    Low  (=1)

Individual Treatment Effects Winnow Adoption Vision Upgrade

Table 4. Heterogeneity in the Effect of Winnow Adoption and Vision Upgrade
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on average, high-variability sites experience 45% reduction vs. 25% for medium variability sites and

42% for low variability sites.

Combinations of site characteristics. For ease of reference, Table 5 provides the breakdown of the

adoption effect (3 months post-adoption) for various size-service type-demand variability combina-

tions along with their average pre-adoption waste levels. The least favorable combination of site

characteristics, large site with table service and medium demand variability sees, on average, a 7%

food waste reduction three months post-adoption. While small, high-variability, buffets benefit the

most, enjoying, on average, a 46% reduction.

7.4. Heterogeneous Treatment Effects: Winnow Vision. We also explore the heterogeneity

in the effect of the Winnow Vision upgrade (see Table 4, Vision upgrade column).

Contrary to our findings for the Winnow Adoption effect, we don’t see a significant difference across

sites with different demand variability levels. This might be because (as we show in Section 8.1)

the additional waste events captured by the vision system are largely straightforward inventory and

cooking errors that have less to do with managerial responses to demand changes.

Similar to the effect of Winnow Adoption, smaller sites and buffets also enjoy the biggest benefits

from upgrading to vision. One year post upgrade, smaller sites experience a higher additional

reduction compared to larger sites (57% vs. 21%). Buffets experience a higher additional reduction

compared to table sites (55% vs 24%). Small buffets see the highest additional gains (about 65% on

average), followed by small table services (54%), large buffets (46%), and large table sites (21%).

7.5. Validation and Robustness. We conduct several additional analyses to examine the validity

and robustness of our findings.

Service type
Demand variability
(Coeff. of variation)

Avg pre-adoption 
waste (grams/cover)

Adoption effect 
(% reduction)

Avg pre-adoption 
waste (grams/cover)

Adoption effect 
(% reduction)

Low 1724 44% 1185 30%

Medium 2207 32% 1234 16%

High 4371 46% 2297 32%

Low 1188 38% 384 23%

Medium 1893 25% 415 7%

High 1917 40% 803 25%

Small Site Size Large Site Size

Buffet

Table

Table 5. Winnow Adoption Treatment Effects Heterogeneity
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7.5.1. Placebo Checks. Following the literature (Abadie et al. 2010, Ferman and Pinto 2021, Athey

and Imbens 2022), we assess the validity of our empirical approach by conducting several placebo

tests. In these tests, we investigate whether we observe the effects of Winnow adoption or vision

upgrade in the population that was unexposed to the treatment.

Placebo Checks in Time. Our first placebo test shifts the analysis sample back in time to the

pre-treatment period. We change the treatment time (i.e., when to activate Winnow or when to

upgrade to vision systems in our setting) to an earlier date and re-run the analysis considering the

period from the new treatment time to the old treatment as the placebo post-treatment period. We

expect to verify that the SynthDiD analysis suggests no effect for these redefined post-treatment

periods, which are, in fact, all prior to the actual treatment time. The results of this placebo test

using the pre-treatment periods are presented in Figure 7.3. As expected, we find no significant

effects in those treated sites during either pre/post placebo adoption periods or pre/post placebo

upgrade periods.
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Figure 7.3. In-time Placebo Tests

Placebo Checks in Units. Our second placebo test is conducted by reassigning treatment status

to the control units (i.e., sites that did not upgrade to computer-vision-based systems in our setting),

in turn, to estimate a distribution of placebo effects. This test allows us to further investigate the

likelihood that we might encounter a similarly sized treatment effect just by chance. If the estimated

treatment effect is unusually extreme compared to the distribution of placebo effects (i.e., via two-

sided tests), then the estimated treatment effect is considered significant. Specifically, we iteratively

assign the treatment to the same number of sites as occurred under the vision upgrade (i.e., 42 sites

upgraded their Winnow systems) and estimate placebo effects in each iteration from the SynthDiD

model. The results are presented in Figure 7.4, with the vertical lines indicating the 5th and 95th
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percentiles of this placebo distribution. Our estimates for the vision upgrade (depicted with the

dashed line) fall well below the 5th percentiles of the distributions of placebo coefficient estimates

and t-statistics, further increasing our confidence that we are estimating a true effect.

Figure 7.4. Distributions of Vision Upgrade Effect Estimates and T-Statistics
Notes. These two plots present the distributions of coefficient estimates and t-statistics generated from the
500 placebo simulations using the food waste data for sites that did not upgrade. The 5th and 95th
percentiles are marked with solid vertical lines, while the magnitude of our estimate is depicted with a
dashed line.

7.5.2. Upgrade Selection. As we discussed in Section 6, food service sites that expect higher benefits

might choose to upgrade their classic system to Vision with a higher probability. While the Synth

DiD method itself alleviates this concern, we further perform the following test. We estimate

a Probit/Logit model to examine what type of sites were more likely to upgrade their Winnow

system. Our random effects Probit model includes three key predictors: food waste level, budget

size, and the number of kitchen staff. Intuitively, we may expect that richer and labor-intensive sites

that face higher levels of food waste should be more likely to upgrade and deploy the AI-powered

tool to track food waste. However, the coefficients for all the predictors in our estimated Probit

model are statistically insignificant. In other words, we are unable to detect a particular selection

pattern. The details of the estimation procedure and results are provided in Appendix A.5.

7.5.3. Alternative Methods. We also identify treatment effects using conventional methods, such as

the staggered difference-in-differences (SDiD) estimator (Appendix A.6). Like Wang and Goldfarb

(2017), we identify the causal effect by comparing the change in the outcomes before and after
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adoption for adopting sites with the change in outcomes in the same time periods for sites that have

not yet adopted Winnow. As expected, the pretreatment fit between the trends of the treated and

untreated sites produced by staggered DiD is not as good as that from synthetic DiD (Appendix

A.6, Figure A.1). The treatment effect estimates after adoption demonstrate similar trends, as

we see in our main results, though they are a bit larger in magnitude than those obtained with

synthetic DiD. For example, compared with the main result that there is an average decrease of

29% in daily food waste three months after Winnow adoption, the estimates from staggered DiD

indicate an average decrease of 33%.

8. Mechanisms

The preceding analyses identified large, significant effects of digital technology and AI-enabled waste

data collection. In this section, we explore the potential mechanisms through which such systems

operate to drive reductions in food waste.

8.1. Effect by Type of Food Waste. To unpack the origins of the waste reductions observed,

we repeat our analysis separately on different types of food waste: leftover inventory,7 waste due to

cooking & handling errors, plate waste, and trimmings (as described in Section 5).

Specifically, we use our synthetic DiD approach to analyze how different types of waste change

before and after their exposure to the Winnow treatments (either adoption or the AI upgrade). The

application of the method is as described in Section 6.2; the only difference is that the dependent

variable now becomes the amount of different types of food waste (in grams/cover) during the

observation window.

Adoption Effect by Food Waste Type. The four plots in Figure 8.1 (A) show the pretreatment

fit of SynthDiD between the adopted and the not-yet-adopted as well as the evolution of the Winnow

adoption effect by waste type over time; here, time 0 indicates the period of adoption and other

times are relative to adoption. Figure 8.1 (B) reports the estimated average effects of Winnow

adoption on different types of waste (3 months post-adoption). For all types of waste, we observe

that the estimated ATTs of adoption are negative. That is, all types of waste seem to experience

reductions. We observe that overall waste reductions are primarily driven by a significant decrease

in the leftover inventory. The leftover inventory decreases on average by about 32% (3 months

post-adoption). The reductions in other types of waste are not statistically significant, perhaps due

to limited statistical power. We note an average reduction of 19% in cooking errors, 16% in plate

7This is the sum of expired inventory and unsold prepared foods, items that can not be used or sold, due to expiration
or lack of demand,
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(a) SynthDiD Treatment Effects on Various Types of Waste

After Adoption
-0.3805**
(0.1831)

-0.2081
(0.1982)

-0.1781
(0.7107)

-0.1683
(0.5429)

-0.3459***
(0.1288)

†Reduction (%) 31.65% 18.79% 16.31% 15.49% 29.24%

Outcome Variable: log(waste_per_cover)
Food Waste Breakdown

Leftover 
Inventory

TrimmingsPlate Waste
Cooking & 

Handling Errors
Total

Notes. The table shows 3-month ATT estimates for different types of waste via synthetic DiD. Row (†) reports waste reductions (%) for
the 3 months post-adoption on average, which are transformed from each ATT estimate. Significance level: 10% (*); 5% (**); 1% (***).

(b) Average Effects on Various Types of Waste (3 Months Post-Adoption)

Figure 8.1. Adoption Effect by Food Waste Type

waste, and 15% in trimmings. We suspect that in addition to better production planning, cooking

and handling errors are also reduced by access to better data in the kitchen. Further, the 16% plate

waste reduction suggests that chefs are able to take some actions to reduce this consumer-driven

portion of food waste as well (possibly by reducing portions, changing plate sizes, etc.). Finally,

it is natural to expect that fewer trimmings are created in the preparation stage if there is less

overproduction and cooking and handling errors.

Vision Upgrade Effect by Food Waste Type. The four plots in Figure 8.2 demonstrate the

pretreatment fit of SynthDiD between the upgraded and the not-yet-upgraded as well as the evolu-

tion of vision upgrade effect by waste type over time. Here, time 0 indicates the period of upgrade,

and other times are relative to upgrade. We observe that the estimated vision upgrade ATTs for

all types of waste are negative; all types of food waste are reduced after the upgrade. The table

in Figure 8.2 also reports the average effects of vision upgrade on various types of waste a year

post-upgrade. We document a further statistically significant decrease not only in the leftover in-

ventory (30%) but also in the cooking errors (21%) and trimmings (43%) on account of upgrading
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(a) SynthDiD Treatment Effects on Various Types of Waste

After Upgrade
-0.3546**
(0.1789)

-0.2330*
(0.1220)

-0.1931
(0.1571)

-0.5646**
(0.2766)

-0.3570***
(0.1329)

†Reduction (%) 29.85% 20.78% 17.56% 43.14% 30.02%

Outcome Variable: log(waste_per_cover)
Food Waste Breakdown

Leftover 
Inventories

TrimmingsPlate Waste
Cooking & 

Handling Errors
Total

Notes. The table shows 12-month ATT estimates for different types of waste via synthetic DiD. Row (†) reports further reductions (%)
for the 12 months post-upgrade on average, which are transformed from each ATT estimate. Significance level: 10% (*); 5% (**); 1% (***).

(b) Average Effects on Various Types of Waste (12 Months Post-Upgrade)

Figure 8.2. Vision Upgrade Effect by Food Waste Type
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Figure 8.3. Total Waste Breakdown 3 Months Before and After Vision Upgrade

to the computer-vision-based system. We also see an 18% reduction in plate waste, although this

reduction is not statistically significant.

We next examine the total waste breakdown before and after the vision upgrade for the upgraded

sites, Figure 8.3. We observe that before the upgrade, on average, 3% of food waste events recorded

were uncategorized (Figure 8.3(a)). Just these 3% of food waste events, however, accounted for

about 26% of the total waste amount (by weight) (see Figure 8.3(b)). The virtually complete

categorization by the vision system (Figure 8.3 a and b) prevents such large waste events from

being hidden, be it massive overproduction/over-purchase or cooking errors. The ability to see and
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control these large waste events drives the additional food waste reduction in leftover inventory and

cooking errors, and, as a result, the corresponding reduction in trimmings.

8.2. Correction of Behavioral Biases. Managerial biases could lead to suboptimal actions in

production and inventory management. We particularly look at those behaviors that could cause

higher-than-necessary food waste in the kitchen. Specifically, we explore the three main biases

identified by the behavioral operations management literature:

� static production plan (i.e., relying on simple heuristics or rules of thumb),

� demand chasing (i.e., adjusting the production quantity towards the demand in the prior

period),

� overreaction to demand spikes (i.e., raising/lowering the production quantity in response to

the sharp demand increase/decrease in prior periods).8

We expect the adoption of Winnow systems to drive better decision-making for kitchen managers.

By correcting the behavioral biases mentioned above, Winnow systems could reduce unnecessary

food waste. Waste data collected by Winnow systems can also serve as continuous inventory feed-

back. Though the system does not provide recommendations (predictive or prescriptive solutions),

it offers a simple way to monitor and assess the performance of production and inventory decisions,

thus enabling users to correct certain wasteful behaviors in the kitchen.

Interestingly, while we cannot directly observe the changes in the site’s production or inventory

behaviors, we were able to infer the behavior changes by developing a pattern-matching method

that uses the collected waste data alone. More specifically, we utilize machine learning techniques

to detect these behavioral biases and then conduct a DiD-type analysis to determine how the

identified incidence of these biases changes after the adoption/upgrade of Winnow. We describe

the method and results from the detection of biases in Section 8.2.1, and those for establishing the

causal relationship between the changes in the incidence of biases and Winnow adoption/upgrade

in Section 8.2.2.

8.2.1. Bias Detection by Machine Learning Classifiers. Our approach to detecting biases relies on

identifying patterns in the time series of waste data. Note that this problem would be trivial if

we had access to the time series of waste and/or sales and production. As described above in

our institutional context, as a practical matter, most sites using the Winnow system do not have

8Mathematically speaking, demand chasing can be expressed by Qt = Qt−1 + α(Dt−1 −Qt−1) + ϵt where α ∈ (0, 1]
captures the degree of demand chasing and ϵt is the noise term, where Qt be the order quantity in period t, and Dt

be the demand in period t. Overreaction to demand changes can be expressed by Qt = Qt−1 + δ(Dt−1 −Dt−2)
+ −

γ(Dt−2−Dt−1)
++ ϵt where δ ≥ 0 captures the degree of overreaction to demand spike and γ ≥ 0 captures the degree

of overreaction to demand slump.
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sales data (especially the biggest culprits–buffets), nor do we have production or work-in-progress

inventory data. So, we attempt to detect biases only using waste data.

There is a second challenge— the data streams recorded by Winnow are not labeled with what

human mistake a kitchen manager might have made in their food production or the bias in action,

and thus, we cannot train pattern-detection algorithms or time-series classifiers based directly on

Winnow data; our data is unlabeled. Like in many contemporary AI applications, we instead train

our models on synthetic data and validate the trained classifiers in a third-data set. In particular, we

follow four steps: (1) we generate labeled synthetic waste data by simulating the dynamics of food

production systems under the three behavioral biases. (2) Next, we train a classifier on this data,

details below. (3) we validate the performance of this classifier in out-of-sample synthetic data and

in lab experimental data from a previous behavior operations study on inventory biases. (4) finally,

we use the developed trained classifier to predict the bias in operation in the Winnow data before

and after the adoption/upgrade of the Winnow system. These predictions are the input to our

subsequent difference-in-difference analysis on the incidence of biases. Steps (1)-(4) are described

below.

(1) Generating Synthetic Training Data. Our data generation process is straightforward.

We build a perishable-inventory system based on the (Q, r) model (Berk and Gürler 2008) and

incorporate three biases into the model. For simulation, we calibrate the data-generating simulation

with real-world product and economic characteristics (for ex., demand parameters, cost parameters,

and product characteristics such as shelf life and cooking time). Appendix A.7 provides the full

simulation algorithms.

To obtain the best possible detectors and cleanest comparisons, we identified a subset of 57 kitchens

from our dataset that belong to one company, serve exactly the same products in exactly the same

formats, and for which we have extensive information on food items served. We use parameters

of these kitchens and products (demand parameters, cost parameters, and product characteristics

such as shelf life, cooking time, etc.) to generate the synthetic data.

(2) Time-series Classifiers Developed on Synthetic Data. Our detection problem is akin to

the time-series classification task, where the training data is a set of time series with class labels,

and the goal is to detect the presence of a specific issue automatically. There are many algorithms

specially designed for classifying time series. We start with some intuitive distance-based models

like the k-nearest neighbors (KNN, Fix and Hodges 1989) algorithm, which classify time series based

on similarity among them. However, one big issue is that they are unable to extract information

on the relationship between variables. We then explore feature-based algorithms, for example, a
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time-series forest classifier that adapts random forest (RF, Breiman 2001) classifier to the time

series data. They extract discriminative features of time series for classification, whose performance

thus relies heavily on the quality of extracted features.9

Modern deep-learning algorithms, on the other hand, offer better ways for feature extraction. They

automatically learn a hierarchical feature representation from the data that could preserve most of

the information content of a time series. One common choice is the convolutional neural networks

(CNN, Lecun et al. 1998) algorithm, where the deep layers in the network act as a set of feature

extractors that are somewhat generic. A more sophisticated technique has been developed, the

long short-term memory fully convolutional networks (LSTM-FCN, Karim et al. 2017) algorithm,

which enhances fully convolutional networks (FCN, Long et al. 2014) by adding a long short-term

memory (LSTM, Hochreiter and Schmidhuber 1997) block that is able to hold long-term temporal

contextual information.

To develop bias detectors, we divided the synthesized waste time series data that are labeled with

the respective behavioral biases into training and out-of-sample testing datasets and train time-

series classifiers via three representative algorithms including k-nearest neighbors (KNN), random

forests (RF), long short-term memory fully convolutional networks (LSTM-FCN). Appendix A.8

provides additional details.

(3) Validation of the Bias-Detection Algorithm. Out-of-sample accuracy is the main per-

formance measure for our classification task using synthesized data. We find that the three biases

can be detected from the waste data alone with very high accuracy via the deep-learning-based

classifiers. For example, for characteristics corresponding to the most frequently wasted item in

our institutional context (meatballs), we could detect whether there is a certain bias, e.g., either

static production plan, demand chasing, or overreaction to demand spikes, from the synthesized

waste time series data with 90% accuracy using the deep-learning-based LSTM-FCN algorithm (by

comparison, KNN and RF at lower accuracy, 55% and 75% respectively).

To further validate the translation from our synthetic data to real-world data, we ran our classifier

on the experimental data generated in a landmark inventory-biases study Rudi and Drake (2014).

In this lab study, the waste data and the bias in operation are both available. We applied our

classifier to the waste data alone and our classifier was able to detect the biases with almost full

accuracy.

9To overcome this issue, there are more advanced feature-based algorithms that enable feature selection, but the
effect is limited as the extracted features themselves are generally simple (i.e., so-called hand-crafted features) and
cannot fully represent a time series.
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(4) Bias Detection at Winnow Sites. We next deployed the validated classifiers to the 57

sites (whose economic characteristics we had used to generate synthetic data) and identified if any

behavioral biases were implied by the waste generated at each site. We did this for various time

windows. Take the most frequently wasted item, meatball, for example. In total, 28,000 daily

observations of meatball leftovers were collected from the 57 sites.

Using our LSTM-FCN multi-class classifier, we find that behavioral biases were rampant before

Winnow adoption, particularly demand chasing. The average incidence of the three biases across 57

sites pre-adoption is 62% for demand chasing, 9% for static production plan, and 7% for overreaction

to demand spikes. That is, only 22% of time periods were identified as having waste outcomes

consistent with optimal/bias-free decision-making. We describe the results of our pre- and post-

adoption comparisons next.

8.2.2. Post-treatment Correction of Behavioral Biases. To investigate if, post-Winnow adoption,

any of the behavioral biases are changed, we investigate the probability of having a certain bias

predicted by the LSTM-FCN classifier. The 57 sites adopted/upgraded Winnow in a staggered

manner, offering us a quasi-experimental setting where we can apply the DiD technique to identify

the causal effect of adopting Winnow Classic and upgrading to Winnow Vision on the detected bias

outcomes. This analysis proceeds along the same lines as our main analysis, except we use the

staggered DiD estimator, instead of the synthetic DiD estimator. The four plots in Figure 8.4(A),

demonstrate the dynamic event study treatment effect estimates, along with their 95% confidence

intervals (CIs). Here, time 0 indicates the period of Winnow adoption and other times are relative to

the adoption. Before Winnow adoption, we do not observe any statistically significant differences in

the predicted probabilities of all three behavioral biases between “treatment” and “control” groups

(in our staggered treatment case, the control group constitutes sites that have not yet adopted

Winnow by the time). After adoption, we observe a significant reduction in the probability of

demand chasing (on average, a 23% reduction three months post-adoption) with a corresponding

increase in the probability of bias-free behavior. The other two biases do not experience a significant

change.

Among the 57 sites, 19 upgraded the Winnow Classic system to the computer-vision-based Winnow

Vision. The four event-study plots in Figure 8.4(B), show the ATT estimates along with their 95%

confidence intervals (CIs) over time. Here, time 0 indicates the period of vision upgrade. For the

Vision upgraders, we do not find evidence for changes in the incidence of the three biases compared

with non-upgraders. Perhaps, this is because the additional events captured by the vision system
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Figure 8.4. Identified Biases in Operation by LSTM-FCN Model

are largely straightforward errors (inventory and cooking) and have less to do with the managerial

response to demand changes (as shown in Sections 7.2 and 7.4).

8.3. Discussion. Our waste breakdown analysis suggests that managing leftover inventories is the

main driver of waste reductions at commercial kitchens following Winnow’s implementation. The

reductions may be due to the kitchen managers utilizing waste records as a form of inventory

feedback and correcting wasteful behaviors in their food production. Our machine-learning-based

behavioral-bias detection analysis provides further evidence. We find that the adoption of Winnow

technology decreases the incidence of several common biases in operation. The behavioral changes

we document are consistent with our prediction of how kitchen managers act in the presence of

waste feedback and contribute to the observed reductions in leftover inventory. Overall, it appears

that a benefit of using a waste measuring and monitoring system is that it allows users to evaluate

their actions in the kitchen and fine-tune them.

Additionally, after the AI upgrade, we observe a further decrease not only in leftover inventories but

also in other types of waste like trimmings, cooking & handling errors. We do not find evidence that
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supports any further change in the incidence of managerial biases. Overall, these results suggest that

the additional benefits of an AI-driven system accrue through better categorization of food waste

events and by preventing systematic misreporting of data related to the most egregious behaviors.

We utilize machine learning techniques to infer how kitchen managers behave before and after Win-

now implementation, only from waste data. There might be a gap between the detected behavioral

changes and the ground truth. Given the data availability, this is the best choice we could make.

If more detailed data were accessible, for example, actual production decisions, we would be able

to directly analyze the changes in kitchen manager’s observable actions after Winnow adoption.

However, it is unlikely that such data will be available at a large scale any time soon.

9. Conclusion

What gets measured gets managed. Accurate measurement of food waste is important as data

informs priorities, policies, and mitigation strategies and helps track progress. Recent technological

developments in food waste capture hold promise for creating food waste solutions. Technology

companies, such as our industry collaborator Winnow, have launched (AI-powered) granular food

waste information gathering systems that can easily measure and stratify food waste in an auto-

mated manner, down to individual disposal transactions of single ingredients at different levels of

preparation.

In this study, with the unique Winnow data, we provide the first census of the nature of commercial

food waste, contributing to a better understanding of what exactly is being wasted, how much,

and why. The quasi-experimental setting of the Winnow technology implementation at almost 900

commercial kitchens allows us to apply a synthetic difference-in-differences technique and identify

the causal effect of Winnow adoption on food waste. We find that the adoption of Winnow systems

reduces food waste, on average, by 29% three months post-adoption. We demonstrate that the effect

is substantial and robust using alternative methods. In addition, we estimate that upgrading to the

computer-vision-based automatic recognition system induces a further 30% average reduction in food

waste level one year post-upgrade. Building on the main effects we document, we also disentangle

potential avenues through which Winnow may benefit its users in reducing food waste. Our results

reveal that the value of Winnow adoption mainly comes from the reduction in the leftover inventories,

while the boost value of AI introduction is due to the ability to see and control additional large

waste events that were previously unrecorded. By utilizing machine learning techniques, we further

identify common biases in operation from waste data streams and conclude that the correction of

behavioral biases in managing food production or inventories drives the value Winnow creates.
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Our research has certain limitations, which create exciting opportunities for future research. First,

due to data unavailability before the installation of Winnow, we were only able to leverage the lim-

ited blind period of those later adopters for constructing synthetic control for each early adopter.

The effect of Winnow adoption we study is thus restricted to relatively short-term effects. Col-

lecting historic organic waste volumes from other sources should afford excellent opportunities to

better quantify a longer-term effect and validate the Winnow value we have measured. Second, we

cannot directly examine how users adjust their production inventory management after receiving

waste feedback from Winnow, as the actual production and inventory decisions are not observed

in our setting. Detailed records of these decisions would offer future researchers a different way to

uncover possible economic and behavioral mechanisms that underlie the identified effects. Third,

our data were truncated by the spread of COVID-19. It remains interesting to explore how Winnow

works during times of random shocks versus regular times. Finally, Winnow currently does not

provide recommendations and leaves users to generate their own insights from the data. The lack of

good predictive and prescriptive solutions to perishable inventory problems suggests future research

avenues, such as the development of AI-based prescriptive inventory management systems.
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Appendix A. Supplemental Materials

A.1. Summary Statistics of Subsample. Comparing with Table 1 in Section 5 for the full sam-

ple, we observe that statistics of the main variables basically, do not change much in the subsample.

Also, the subsample sites vary by their service type and industry category, staying representative

for the full sample sites.

Variables Mean Standard Dev. Min Median Max N
Daily total waste (weight) grams 437,575 692,639 10 218,340 36,435,990 116,109
# of meals served daily (covers) count 1,556 1,478 1 932 22,808 116,109
Daily sales (sales) US dollars 12,120 10,602 1.11 9,230 319,350 116,094
Demand variability (demand_cv) coef. of variation 0.2784 0.2240 0.0011 0.2252 2.8119 114,572
Waste per cover (waste_per_cover) grams/cover 642 1,532 0.0026 237 155,168 116,109

Notes. In our main treatment effect analysis, we only keep 178 eligible sites and drop those whose donor pool for synthetic control
construction is empty. The table reports summary statistics of the subsample.

Table 6. Subsample Summary Statistics

A.2. Calculation of Estimated Standard Error for τ̂ . Let N =
∑

rN
tr
r be the number of all

the treatment sites where N tr
r is the set of treatment sites in cohort r. Following Kahn (2022), it is

a property of the influence functions of such estimators of summary parameters that the following

holds:

1√
N

(τ̂ − τ) =

N∑
i=1

ψτ (xi) + op(1)

where ψτ (xi) is the influence function for the i-th observation (that tells the effect of a change in one

observation on an estimator) and the summary parameter τ. As such, the variance of our summary

parameter τ̂ can be computed through the procedure described in Erickson and Whited (2002) and

Kahn (2022). The main idea is to calculate empirical equivalents of the influence functions for each

estimate, and stack them into a single matrix, Ψ, in which the rows correspond to each observation

and the columns to each estimator. For the cohort-level estimators τ̂r, r = 1, ...,M, and observations

i = 1, ..., N , we create a matrix (i.e., in our setting M = 79, N = 178)

Ψ = [ψτ̂1 , ..., ψτ̂M ]N×M

where every element of Ψ, [Ψ]ij is equal to ψτ̂j (xi). The variance-covariance matrix for the individual

cohort estimators can be thus calculated

V̂ =
1

N2
(ΨTΨ).
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Then using the weight vector µ = [µ1, ..., µM ]T , an estimator for the variance of the aggregated

summary parameter can be computed as

V̂τ̂ = µT V̂ µ.

A.3. Constructing the SynthDiD Event Study Plot. Synthetic DiD presented in Section 6.2

is designed to minimize the mean squared error of a target estimated ATT and not to separately

measure effects in specific time periods. The event study plot we construct is thus used to illustrate

the effects in each time period. To compute the treatment effects pre-adoption, we compute for

each adoption cohort r and each time period t between r + lmin and r–1,

τ̂r(t−r) = (

∑
i∈Ntr

r
log(Yit + 1)

|N tr
r |

− (ω̂0 +
∑
i∈Nco

r

ω̂i log(Yit + 1))) · λ̂t.

Because the weights λ̂t for time periods before adoption sum up to one, summing up τ̂r(t−r) yields

values that are approximately zero, which shows a good fit between the treatment outcomes and

the synthetic control pre-adoption. The standard errors for these values are computed using the

jackknife method (or the placebo method in the case where there is only one treated unit). The

values for each cohort are then averaged, and the standard errors are aggregated appropriately.

Computing the cohort-level effects post-adoption is done in a similar manner. For each adoption

cohort r and each time period t between r and r + lmax, we compute

τ̂r(t−r) = (

∑
i∈Ntr

r
log(Yit + 1)

|N tr
r |

− (ω̂0 +
∑
i∈Nco

r

ω̂i log(Yit + 1))),

where we do not weigh the estimated effect by λ̂t as the weight is simply 1
lmax+1 pre-adoption.

Averaging the effects within cohorts and the resulting averages across cohorts then produces the

ATT reported by SynthDiD. The standard error for the aggregate ATT is computed using the

Jackknife method (or the placebo method as before) for the aggregated value, which takes into

account the potential serial correlation between effects across time.

A.4. Computing Individual Treatment Effects. To compute individual treatment effects, for

each individual site i that adopted Winnow in period r and have outcome data available lmin < 0

periods before and lmax + 1 periods after, we construct a control group that comprises sites that

have data available for the same time frame but that adopted Winnow after more than lmax periods

after r. Let Nri denote the set of all units in the balanced panel of the site i who adopted Winnow

in period r and N co
ri denotes the set of control units. The Synthetic DiD estimation procedure solves
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(τ̂i, α̂0, α̂j , γ̂t) = argmin
τi,α0,αj ,γt

{
∑
j∈Nri

r+lmax∑
t=r+lmin

(log(Yjt + 1)− α0 − αj − γt −AfterAdoptjt · τi)2ω̂j λ̂t},

where τ̂i measures the average ATT of site i within the lmax + 1 periods after adoption.

Then following the way we compute dynamic event study treatment effect effects in Appendix A.3,

for each adopting site i and each time period t between r + lmin and r–1, we obtain

τ̂it = (log(Yit + 1)− (ω̂0 +
∑

j∈Nco
ri

ω̂j log(Yjt + 1))) · λ̂t.

For each adopting site i and each time period t between r and r + lmax, we compute

τ̂it = log(Yit + 1)− (ω̂0 +
∑

j∈Nco
ri

ω̂j log(Yjt + 1)).

Thus, τ̂it measures the individual treatment effect for site i in period t, which we will use as the

outcome variable in the heterogeneity analysis of Section 7.3.

A.5. Vision Upgrade Choice. We estimate a random effects probit model for the decision to

upgrade the Winnow Classic to Winnow Vision. We estimate the following model:

Pr(Upgradeit = 1) = Φ(α+ βXit + µi)

where Upgradeit indicates whether site i upgraded the system in period t. Observations after the

upgrade are not used to estimate the above equation because the upgrade decision is made once.

Xit indicates variables influencing the selection decision Upgradeit, which could be a mixture of

time-variant variables, time-invariant variables, and time dummies. Due to a large number of sites,

and to address the incidental parameter problem with site-fixed effects in probit models, we also

include µi as site random effects instead of site-fixed effects.

In our study, variables of interest include waste_per_coverit that measures the lagged waste level

at site i in period t, salesit that is used as a proxy variable for the lagged budget size of site i in

period t, staff_numi that indicates the labor intensity of site i. Table 7 reports the estimation

results.

A.6. Staggered DiD Estimation. We analyze the impact of Winnow adoption on food waste

using classic staggered difference-in-differences (SDiD). We estimate the following SDiD model using

OLS:

log(Yit + 1) = αi + γt +AfterAdoptit · τ + ϵit
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Model 1 Model 2
-9.5868***
(2.1397)

-5.4415
(4.7475)

0.0693
(0.0922)

0.2071
(0.3339)

0.4433
(0.3569)

0.0937
(0.4711)
0.0139

(0.0117)
Yes Yes

1,643 123
178 25

Probit Models for Upgrade Decision

*** -- 1% level, ** -- 5% level, * -- 10% level
The records of staff number are missing for some sites. 

Constant

Log(lag waste per cover)

Log(lag sales)

Number of staff

Site random effects
N_observations
N_site

Table 7. Probit Models for the Upgrade Decision

where Yit is the daily food waste level (in grams/cover) for site i on day t, and AfterAdoptit

indicates whether site i adopted Winnow by day t. We control for individual fixed effects αi and

time fixed effects γt. Two-way clustering of standard errors by site and day, ϵit, is used to address

serial correlation (Bertrand et al. 2004). The coefficient τ measures the change in the daily food

waste level after Winnow adoption. Like Wang and Goldfarb (2017), it is identified by comparing

the change in food waste before and after adoption for adopting sites with the change in food waste

in the same time periods for sites that have not yet adopted Winnow.

The identification assumption in our SDiD analysis is the parallel trends assumption, i.e., there

were no differential trends in food waste before adoption between sites that adopted Winnow and

those that did not. We thus estimate the OLS model below to statistically test the identification

assumption following Borusyak et al. (2024):

log(Yit + 1) = αi + γt +
∑

k ̸=lmin,−1
τk ·Dk

it + ϵit

where Dk
it indicates whether the time tequals k periods relative to adoption for the site i and τk

measures the effect of Winnow adoption in k periods relative to adoption (i.e., k period specific

event-study estimator). The minimum lag lmin and the lag of k = −1 are excluded for identification

purposes. The baseline of the comparison is one period before adoption such that the value at

k = −1 is set to zero.

Figure A.1 plots the coefficient estimates τ̂k, along with their 95% confidence intervals (CIs) for the

daily indicators 14 days before adoption and 90 days after adoption. Time 0 is the day of adoption.
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Figure A.1. Effect of Winnow Adoption on Food Waste Level via Staggered DiD

As the figure reveals, although the coefficients are statistically indistinguishable from zero except

six and seven periods before adoption (which may raise a concern about the validity of the SDiD

analysis), there is no increasing or decreasing trend in the coefficients in the pre-adoption period.

The treatment effect estimates post-adoption share similar trends with those estimated via synthetic

DiD.

A.7. Synthetic Data Generation. To train an AI-based system designed for managerial bias

detection and evaluate its effectiveness. We collect synthesized data by simulating the dynamics of

real-world food production environments according to the perishable (Q, r) model. Here are detailed

steps for simulating calibrated perishable (Q, r) models under different experimental setups, where

either bias-free or biased production decisions induced by various managerial biases are captured.

Demand Generation. Unit demands are generated according to a Poisson process with rate λ̃

λ̃ = Y · λ,

where λ is the long-term average demand rate, e.g., 10 arrivals per hour, and Y is any useful

information observed by the decision maker, e.g., weather conditions.

Let’s initialize the system with Q0 fully fresh items on hand. For any store i, we simulate the

Poisson arrival process within every single day (e.g., assuming 12 operating hours per day) and

aggregate the arrivals as the demand in period t = 1, ..., T , i.e.,

dit = Nit(12), for i = 1, ...N, t = 1, ...T,
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where Nit(t) is the counting process of the Poisson arrivals in (0, t] with rate yit · λ.

Production Generation. The optimal production quantity and reorder point in period t at store

i are obtained by numerically solving the following optimization problem

(qPF∗
it , rPF∗

it )

= arg min
(Q,r)

TC =
K + cQ+

∫ τ

z=L
(hE[OHit(Q, r)|Z = z] + pE[Pit(Q, r)|Z = z] + πE[LSit(Q, r)|Z = z])dFit(z)∫ τ

z=L
E[CLit(Q, r)|Z = z]dFit(z)

,

where Fit(z) is the stationary distribution of the effective shelf life Z at steady state.

The approximately optimal solution to the optimization problem in period t, (qPF∗
it , rPF∗

it ), can be

obtained by applying exhaustive search algorithm (see Algorithm 1 below) on the sample average

total cost rate T̂Cit.

Waste Generation. By aggregating the perishing items within every single day, we obtain the

waste data streams for training and testing purpose.

Incorporate Different Managerial Biases into Perishable (Q, r) Model. The above captures

the case of a bias-free decision. Next, there are several ways to add different kinds of managerial

biases to the bias-free decision.

� Static production plan

The decision maker at store i may simply implement a static production plan based on their expe-

rience or intuition when they make Q decisions. This can be captured by generating the demand

data streams according to the Poisson arrival process with time-invariant rate

λ̃it = y · λ, for i = 1, ...N, t = 1, ...T,

where y can be any constant term.

� Demand chasing

The decision maker at store i may adjust the Q decision towards the demand in the prior period.

Mathematically speaking, we modify Qit by

Qit = Qi,t−1 + α(di,t−1 −Qi,t−1) + ϵit, t ≥ 2

where di,t−1 = di,t−1/Mi,t−1 is the average demand per cycle with di,t−1 being the Poisson arrivals

counted within period t− 1 at store i and Mt−1 being the number of embedded cycle within period

t− 1 at store i, the noise in the production quantity is an iid random variable εit ∼ N(0, σ2), and

α ∈ [0, 1] captures the degree of demand chasing. We initialize qi1 from the bias-free perishable

(Q, r) model (“good behavior”), i.e., qi1 = qPF∗
i1 where qPF∗

i1 is the optimal production quantity.
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Algorithm 1 Monte Carlo Simulation of Perishable (Q, r) Model
1: Simulate sufficient demand arrivals according to the Poisson process at rate λ.
2: Create a sequence of arrival times A = [A0, A1, A2, ....].
3: Create an array of zeros of size N for {Tn : n = 0, 1, ..., N}, the sequence of time epochs at which the inventory level hits Q.
4: Create an array of τ ’s of size N for {Zn : n = 0, 1, ..., N}, the sequence of effective shelf lives of items on hand at Tn.
5: Create arrays of zeros for OH (total stocking time), LS (total number of lost sales), P (total number of perishing items),

TC (total cost rate) within [Tn−1, Tn].
6: function Q_r_optimize(Q, r)
7: while i ≤ N − 1 do
8: j ← argmink Ak ≥ Ti

9: M1 ← argmink Ak > Ti + Zi

10: M2 ← argmink Ak > Ti + L
11: M3 ← argmink Ak > T [i] + L+Aj+Q−r −Aj+Q

12: M4 ← argmink Ak > T [i] + L− Z[i] +Aj+Q−r −Aj

13: if Aj+Q −Aj+Q−r > L and Aj+Q −Aj < Z[i] then ▷ Compute the effective shelf life
14: Z[i+ 1]← τ − (Aj+Q −Aj+Q−r) + L

15: else if Aj+Q −Aj+Q−r > L and Aj+Q −Aj > Z[i] and Aj+Q−r −Aj < Z[i]− L then
16: Z[i+ 1]← τ − (Z[i]−Aj+Q−r +Aj)
17: else
18: Z[i+ 1]← τ

19: end if
20: if Aj+Q−r −Aj > Z[i] then
21: T [i+ 1]← T [i] + L+ Z[i] ▷ Compute the time epoch at which inventory hits Q
22: OH[i+ 1]←

∑M1−j
k=1 (Aj+k −Aj) + Z[i] ∗ (Q− (M1 − j)) ▷ Compute stocking time

23: LS[i+ 1]←M2 − j ▷ Compute total number of lost sales
24: P [i+ 1]← max(0, Q− (M1 − j)) ▷ Compute total number of perishing items
25: TC[i+ 1]← (K + cQ+ h ∗OH[i+ 1] + p ∗ P [i+ 1] + π ∗ LS[i+ 1])/(T [i+ 1]− T [i])

26: else if Aj+Q−r + L > Aj+Q and Aj+Q −Aj < Z[i] then
27: T [i+ 1]← T [i] + L+Aj+Q−r −Aj

28: OH[i+ 1]←
∑M1−j

k=1 (Aj+k −Aj)

29: LS[i+ 1]←M3 − j

30: P [i+ 1]← max(0, Q− (M1 − j))
31: TC[i+ 1]← (K + cQ+ h ∗OH[i+ 1] + p ∗ P [i+ 1] + π ∗ LS[i+ 1])/(T [i+ 1]− T [i])

32: else if Aj+Q−r + L > Aj + Z[i] and Aj+Q−r −Aj < Z[i] and Aj+Q −Aj > Z[i] then
33: T [i+ 1]← T [i] + L+Aj+Q−r −Aj

34: OH[i+ 1]←
∑M1−j

k=1 (Aj+k −Aj) + Z[i] ∗ (Q− (M1 − j))

35: LS[i+ 1]←M4 − j
36: P [i+ 1]← max(0, Q− (M1 − j))

37: TC[i+ 1]← (K + cQ+ h ∗OH[i+ 1] + p ∗ P [i+ 1] + π ∗ LS[i+ 1])/(T [i+ 1]− T [i])

38: else if Aj+Q−r + L < Aj+Q and Aj+Q −Aj < Z[i] then
39: T [i+ 1]← T [i] + L+Aj+Q −Aj

40: OH[i+ 1]←
∑M1−j

k=1 (Aj+k −Aj) +Q ∗ (Aj+Q −Aj+Q−r − L)
41: LS[i+ 1]← 0

42: P [i+ 1]← max(0, Q− (M1 − j))

43: TC[i+ 1]← (K + cQ+ h ∗OH[i+ 1] + p ∗ P [i+ 1] + π ∗ LS[i+ 1])/(T [i+ 1]− T [i])
44: else
45: T [i+ 1]← T [i] + Z[i]

46: OH[i+ 1]←
∑M1−j

k=1 (Aj+k −Aj) + Z[i] ∗ (Q− (M1 − j)) +Q ∗ (Z[i]− (Aj+Q −Aj+Q−r)− L)

47: LS[i+ 1]← 0
48: P [i+ 1]← max(0, Q− (M1 − j))

49: TC[i+ 1]← (K + cQ+ h ∗OH[i+ 1] + p ∗ P [i+ 1] + π ∗ LS[i+ 1])/(T [i+ 1]− T [i])
50: end if
51: end while
52: return 1

N

∑
i TC[i]

53: end function
54: Define vectors of possible Q and r values, sample_Q and sample_r.
55: Create an empty matrix for evaluated samples, sample_eval.
56: Initialize the best approximate solution best_ix_Q← 0, best_ix_r ← 0.
57: while i ≤ len(sample_Q) do
58: while j ≤ len(sample_r) do
59: sample_eval[i, j]← Q_R_OPTIMIZE(sample_Q[i], sample_r[j])
60: if sample_eval[i, j] < sample_eval[best_ix_Q, best_ix_r] then
61: (best_ix_Q, best_ix_r)← (i, j)

62: end if
63: end while
64: end while
65: Print the best approximate solution (best_ix_Q, best_ix_r).
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� Overreaction to demand changes

The decision maker at store i may overreact to demand changes in prior periods. Mathematically

speaking, we modify Qit by

Qit = Qi,t−1 + δ(di,t−1 − di,t−2)
+ − γ(di,t−2 − di,t−1)

+ + ϵit, t ≥ 3

where di,t−1 is the average demand per cycle within period t−1 at store i, the noise in the production

quantity is an iid random variable εit ∼ N(0, σ2), δ ≥ 0 is the degree of overreacting to the demand

spike, and γ ≥ 0 is the degree of overreacting to the demand slump. We initialize qi1 and qi2 from

the bias-free perishable (Q, r) model (“good behavior”).

A.8. Machine Learning Based Time-series Classifiers.

A.8.1. Classifier Development. Define a synthesized dataset as Dsyn = {(X1, Y1), ..., (XN , YN )},

which is a collection of pairs (Xi, Yi) where Xi is a waste time series that is two-week long and

Yi is the assigned label (i.e., one of the three main behavioral biases or neither of them). Each of

the waste time series in our study is two weeks long.10 Our task is to develop classifiers that could

predict at high accuracy which bias is labeled given any new waste time series as input.

We consider k-nearest neighbors (KNN) and random forests (RF) as benchmark classifiers and use

long short-term memory fully convolutional networks (LSTM-FCN) as our main classifier.

Consider an L-layer deep neural network, where each layer li is a representation of the input domain,

taking the output of its previous layer li−1 as input and applying a non-linearity (such as the Sigmoid

function) to compute its own output. The behavior of these non-linear transformations is controlled

by a set of parameters θi for each layer (i.e., weights). Hence, mathematically, given an input x, a

neural network performs the following computations to predict the class:

fL(θL, x) = fL−1(θL−1, fL−2(θL−2, ..., f1(θ1, x)))

where fi is the non-linearity applied at layer li and fL is the final output (i.e., the results of

convolutions) in the form of a probability distribution over the class variable in the dataset. During

training, the network is presented with a certain number of known input outputs. Referring to Fawaz

et al. (2019), first, the weights are initialized randomly. Second, a forward pass through the model is

applied, that is, computing the output given an input x. The output is a vector whose components

are the estimated probabilities of x belonging to each class, and the label assigned corresponds to

10For most sites the pre-adoption period is at least two-week long. Each waste time series in the synthetic dataset is
set to be two-week long, so that the classifiers developed on the synthetic data can be applied on the real waste data
pre- and post- Winnow adoption.
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the class with maximum probability. The prediction loss of the model is thus computed using a

cost function, such as the negative log-likelihood. Third, the weights are updated in a backward

pass to propagate the error via gradient descent. By iteratively taking a forward pass followed by

back-propagation, the model’s parameters are updated in a way that minimizes the loss on the

training data. During testing, the model is tested on the rest of Dsyn. The accuracy measure is

thus computed by comparing the predicted labels by the model with the true labels in the testing

dataset.

A.8.2. Results. KNN, RF, and LSTM-FCN are all implemented in PyTorch. We develop these

classifiers using a synthetic dataset of size 20,000 (5,000 for each class), in which 80% of the data

are used for training, and the remaining are used for validation. The validation set is used to

evaluate the performance of classification models for various combinations of hyperparameters and

prevent overfitting.

The KNN model (with the number of neighbors set as k = 5) and the RF model (with the number

of trees in the forest set as 500) yield 55% and 75% classification accuracy, respectively. The LSTM-

FCN model turns out 90% accuracy. We refer to the one proposed in Karim et al. (2017) as its

model architecture, where there are three convolution layers, each of which has 64 filters and an

LSTM layer with 8 cells followed by a dropout layer. During the training process, cross-entropy loss

function and Adam optimizer are used. The model is finally tuned with hyperparameters: learning

rate = 0.0001, mini-batch size = 128, weight initialization = Kaiming initialization, activation =

Rectified linear unit (ReLU), Dropout rate = 0.25.
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